metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Ethane-1,2-diamine)dinitratopalladium(II)

David J. Bray,^{a,b} Jack K. Clegg,^b* Li-Ling Liao,^{c,b} Leonard F. Lindoy,^b John C. McMurtrie,^{d,b} David Schilter,^b Gang Wei^{a,b} and Tae-Iin Won^b

^aCSIRO, Industrial Physics, Bradfield Road, West Lindfield, New South Wales 2070, Australia, ^bCentre for Heavy Metals Research, School of Chemistry, F11, The University of Sydney, NSW 2006, Australia, ^cSchool of Physics and Chemistry, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China, and ^dSchool of Physical and Chemical Sciences, Queensland University of Technology, Queensland 4001, Australia

Correspondence e-mail: clegg_j@chem.usyd.edu.au

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.002 Å R factor = 0.016 wR factor = 0.043 Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The title compound, $[Pd(NO_3)_2(C_2H_8N_2)]$, forms an infinite two-dimensional sheet-like motif, propagated by intermolecular hydrogen bonds between the amino groups of the ethane-1,2-diamine ligands and the nitrate O atoms. There are two complex molecules in the asymmetric unit.

Comment

Our group has long been interested in the use of metal complexes as components for the construction of large supramolecular architectures (Lindoy & Atkinson, 2000). In particular, we are interested in the construction and chemistry of metallocyclic systems (Clegg *et al.*, 2004, 2005). The title compound, (I), has found extensive use as a precursor in the preparation of cyclic metallo-supramolecular structures (Fujita *et al.*, 2005). Crystals suitable for this study were obtained in the course of our investigation into the interactions of N-donor ligand systems (Bray *et al.*, 2005) with (I).

An ORTEP (Farrugia, 1997) representation of (I) is given in Fig. 1. As expected, each Pd^{II} ion has a geometry close to an ideal square-plane (Table 1). The N donor atoms of the bidentate ethane-1,2-diamine ligand (en) occupy two coordination sites in a typical five-membered chelate arrangment. The remaining coordination sites are occupied by nitrate O atoms of two nitrate ligands.

The asymmetric unit contains two of these complexes, which pack *via* intermolecular hydrogen bonds between the NH_2 groups of the en ligands and the O atoms of the nitrate ligands. Hydrogen-bond details are provided in Table 2.

The intermolecular hydrogen bonds propagate in two dimensions, forming an infinite sheet-like motif that lies parallel to the bc plane (Fig. 2). Each of the N donor atoms forms hydrogen bonds to (at least) two O acceptor atoms, with only atoms O5 and O8 not involved in close interactions. The sheets stack along the *a* axis, as shown in the crystal packing diagram (Fig. 3).

Received 17 August 2005 Accepted 30 August 2005 Online 14 September 2005

Figure 1

A representation of the asymmetric unit of (I), shown with 50% probability displacement ellipsoids.

Figure 2

A view of part of one of the two-dimensional sheets formed by hydrogen bonding. The sheets extend infinitely in the bc plane and stack on top of each other along the a axis.

Figure 3

A view of (I), along the b axis. Alternate two-dimensional sheets are shown in red and green. There are no hydrogen-bonding interactions connecting adjacent layers. There are no hydrogen-bonding interactions connecting adjacent layers (indicated by blue arrows).

Experimental

The title compound was prepared from cis-[Pd(en)Cl₂] and identified as the desired product by comparison with literature data (Fujita *et al.*, 1996; Tercero-Moreno *et al.*, 1996). Crystals of (I) suitable for the X-ray diffraction study were isolated from methanol after several days of slow evaporation. All reagents were purchased from Sigma– Aldrich.

Crystal data
$C_2H_8N_4O_6Pd$
$M_r = 290.52$
Monoclinic, $P2_1/c$
a = 16.8478 (6) Å
b = 7.7746 (3) Å
c = 13.0702 (5) Å
$\beta = 109.816 \ (1)^{\circ}$
$V = 1610.62 (10) \text{ Å}^3$
Z = 8

Data collection

Bruker SMART 1000 CCD areadetector diffractometer

 ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1999) $T_{min} = 0.514, T_{max} = 0.690$

15349 measured reflections

$$\begin{split} D_x &= 2.396 \text{ Mg m}^{-3} \\ \text{Mo } K\alpha \text{ radiation} \\ \text{Cell parameters from 10524} \\ \text{reflections} \\ \theta &= 2.4-28.3^{\circ} \\ \mu &= 2.32 \text{ mm}^{-1} \\ T &= 150 \text{ (2) K} \\ \text{Block, colourless} \\ 0.51 \times 0.30 \times 0.16 \text{ mm} \end{split}$$

3881 independent reflections 3554 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 28.3^{\circ}$ $h = -22 \rightarrow 22$ $k = -10 \rightarrow 10$ $l = -17 \rightarrow 16$

metal-organic papers

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0236P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.016$	+ 0.7251P]
$wR(F^2) = 0.043$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.002$
3881 reflections	$\Delta \rho_{\rm max} = 1.08 \ {\rm e} \ {\rm \AA}^{-3}$
259 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected geometric parameters (Å, °).

N1-Pd1	2.0032 (14)	O3-Pd1	2.0326 (12)
N2-Pd1	2.0231 (14)	O4-Pd1	2.0492 (11)
N5-Pd2	2.0102 (15)	O9-Pd2	2.0465 (12)
N6-Pd2	2.0150 (14)	O12-Pd2	2.0426 (11)
N1-Pd1-N2	83.84 (6)	N5-Pd2-N6	83.82 (6)
N1-Pd1-O3	172.80 (6)	N5-Pd2-O12	95.14 (5)
N2-Pd1-O3	94.62 (5)	N6-Pd2-O12	173.68 (5)
N1-Pd1-O4	90.81 (5)	N5-Pd2-O9	173.01 (5)
N2-Pd1-O4	173.19 (5)	N6-Pd2-O9	91.35 (5)
O3-Pd1-O4	90.16 (5)	O12-Pd2-O9	89.11 (5)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N2-H3···O7	0.90 (2)	2.23 (2)	2.9167 (19)	134 (2)
$N2-H3\cdots O11^{i}$	0.90(2)	2.45 (2)	3.0911 (19)	129 (2)
$N2-H4\cdots O1$	0.89 (2)	2.49 (2)	3.009 (2)	118 (2)
$N2-H4\cdots O9^{ii}$	0.89(2)	2.58 (2)	3.415 (2)	158 (2)
$N5-H6\cdots O4$	0.88(2)	2.45 (2)	3.2837 (19)	160(2)
$N5-H6\cdots O4$	0.88(2)	2.45 (2)	3.2837 (19)	160(2)
$N1 - H2 \cdot \cdot \cdot O11^{ii}$	0.86(2)	2.35 (2)	3.199 (2)	167 (2)
$N1 - H2 \cdot \cdot \cdot O12^{ii}$	0.86(2)	2.46 (2)	3.1177 (19)	133 (2)
$N1 - H1 \cdots O9^{iii}$	0.88(2)	2.24 (2)	3.0642 (18)	157 (2)
N6-H7···O3	0.88(2)	2.39 (2)	2.9550 (18)	122 (2)
$N6-H7\cdots O10^{i}$	0.88(2)	2.50 (2)	3.1324 (19)	130 (2)
$N6-H7\cdots O2$	0.88(2)	2.58 (2)	3.363 (2)	149 (2)
$N6-H8\cdots O4^{i}$	0.88(2)	2.38 (2)	3.1695 (18)	150(2)
$N6{-}H8{\cdots}O6^i$	0.88 (2)	2.40 (2)	3.1628 (19)	145 (2)

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) x, y - 1, z; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

C-bound H atoms were included in idealized positions and refined using a riding-model approximation, with methylene C-H bond lengths fixed at 0.99 Å. N-bound H atoms were located in a difference Fourier map and refined with bond-length restraints of 0.90 (2) Å. $U_{\rm iso}({\rm H})$ values were fixed at $1.2U_{\rm eq}({\rm C})$ and $1.5U_{\rm eq}({\rm N})$. The maximum residual electron-density peak is located 0.86 Å from atom Pd2.

Data collection: *SMART* (Bruker, 1995); cell refinement: *SAINT* (Bruker, 1995); data reduction: *SAINT* and *XPREP* (Bruker, 1995); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3* (Farrugia, 1997) and *WinGX32* (Farrugia, 1999); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

The authors gratefully acknowledge the Australian Research Council for financial support.

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bray, D. J., Liao, L.-L., Antonioli, B., Gloe, K., Lindoy, L. F., McMurtrie, J. C., Wei, G. & Zhang, X.-Y. (2005). *Dalton Trans.* pp. 2082–2083.
- Bruker (1995). SMART (Version 5.054), SAINT (Version 6.45) and XPREP (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Clegg, J. K., Lindoy, L. F., McMurtrie, J. C., Moubaraki, B. & Murray, K. (2004). Dalton Trans. pp. 2417–2423.
- Clegg, J. K., Lindoy, L. F., McMurtrie, J. C. & Schilter, D. (2005). Dalton Trans. pp. 857–864.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fujita, M., Aoyagi, M. & Ogura, K. (1996). Inorg. Chim. Acta, 246, 53-57.
- Fujita, M., Tominaga, M., Hori, A. & Therrien, B. (2005). Acc. Chem. Res. 38, 369–378.
- Lindoy, L. F. & Atkinson, I. M. (2000). Self-Assembly in Supramolecular Systems. Monographs in Supramolecular Chemistry, Series Editor J. F. Stoddart. Cambridge: Royal Society of Chemistry.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.
- Tercero-Moreno, A. M.-H. J. M., Gorzález-Garciá, S. & Niclós-Gutiérrez, J. (1996). Inorg. Chim. Acta, 253, 23–29.